Abstract

Physical transient electronics have attracted more attention as the basis for building green electronics and biomedical devices. However, there are difficulties in selecting materials for the fabricated devices to take into account both biodegradability and high performance. In this paper, a physically transient resistive random-access memory (RRAM) device was fabricated by using egg protein and graphene quantum dot composites as active layers. The sandwich structure composed of Al/EA:GQD/ITO shows a good write-once-multiple-read memory characteristic, and the introduced GQD improves the switching current ratio of the device. By using the sensitivity of GQDs to ultraviolet light, the logic operation of the “OR gate” is completed. Furthermore, the device exhibits a physical transient behavior and good biodegradability due to the dissolution behavior in deionized water. These results suggest that the device is a favorable candidate for the construction of memory elements for transient electronic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call