Abstract
The potential of terahertz (THz) imaging implementation in a large variety of applications requires compact, reliable, and relatively low-cost solutions in systems constituents. Here we focus on the development of passive optical elements and demonstrate flexible and reliable THz beam profile engineering for imaging aims via mechanical bending of a stainless steel-based C-shaped metasurface. The designed and laser-ablation technology fabricated metasurface provides compact THz focusing and enables THz light engineering as well as polarization control ability in THz imaging. Focusing, light profile engineering, and polarization control performances of the metasurfaces with different focal distances and C-shape designs are presented. Experimental data are well supported by simulations, using Finite Difference Time Domain (FDTD) method. THz images of different objects at ∼94 GHz using InP Gunn diode, bow-tie sensors, and exclusively metasurfaces-based optics are exposed. Further routes in the development of low-cost multicolor and polarization-sensitive THz imaging are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.