Abstract

Aerogel possesses the advantages of high specific surface area, low density, and high porosity, which have shown great application in thermal regulation due to its efficient light scattering capability. However, traditional polymer-based aerogels have poor mechanical properties and lack ductility in outdoor applications, the cooling efficiency of the material is easily affected by damage during transportation, installation, and environmental factors. In this work, combining the porous nature of aerogels and the high ductility of membranes, a polylactic acid-based porous membrane cooler was developed by combining a regular honeycomb surface porous structure design and physical/chemical modification to enhance flexibility, using a simple non-solvent induced phase separation method. This porous membrane exhibits both super-flexibility (116 % elongation at break) and porous characteristics. It achieves a sub-ambient temperature decrease of 4–6 °C under direct sunlight. The optimized porous membrane demonstrates high solar reflectance (94 % of peak reflectivity, 90 % of average reflectivity) and strong infrared emissivity (96 % of peak emissivity, 91 % of average emissivity), it also maintains a solar peak reflectivity of 91 % under 100 % tensile strain and 1000 bending cycles, the cooler still maintains a cooling effect of 2–5 °C below ambient temperature. This work paves the way for developing mechanical flexible and strong radiative coolers for thermal regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call