Abstract

Natural polymers with abundant hydrophilic groups are potential candidates for humidity sensor designing. Unfortunately, most of natural polymers lack essential stretchability and high conductivity, which hinder their development in the field of flexible humidity sensor. Cooperation with rubbers and conductive nanometer materials is an effective method to make the best use of natural polymers in flexible humidity sensor. In this paper, a flexible and sensitive sensor with rapid response to humidity change is fabricated based on aldehyde-modified sodium carboxymethyl starch (ACMS), carboxylated styrene-butadiene rubber (XSBR) and Ag nanoflakes through film-forming method. The pre-prepared ACMS owns a better dispersibility in the aqueous phase and serves as reducing agent for formation of Ag nanoflakes. After the film-forming process, the composite film shows a strength of 5.66 MPa and a high stretchability with strain of 367 %. Besides, our sensor shows a rapider response to humidity change than the commercial electronic hygrometer that it takes only 1 s to respond to the humidity change from 25 % RH to 27 % RH. Therefore, the XSBR/ACMS/Ag sensor possesses an impressive sensitive response to slight sweat on human skin and breath, which could find applications in monitoring people's health and distinguish their physical condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.