Abstract
In recent years, flexible pressure sensors have been seen widespread adoption in various fields such as electronic skin, smart wearables, and human-computer interaction systems. Owing to the electrical conductivity and adaptability to flexible substrates, vertical graphene nanowalls (VGNs) have recently been recognized as promising materials for pressure-sensing applications. Our study presented the synthesis of high-quality VGNs via plasma enhanced chemical vapor deposition and the incorporation of a metal layer by electron beam evaporation, forming a stacked structure of VGNs/Metal/VGNs. Metal nanoparticles attached to the edges and surfaces of graphene nanosheets can alter the charge transport paths within the material to enhance the responsiveness of the sensor. This layered structure effectively fulfilled the requirements of flexible pressure sensors, exhibiting high sensitivity (40.15 kPa-1), low response time (88 ms), and short recovery time (97 ms). The pressure sensitivity remained intact even after 1000 bending cycles. Additionally, the factors contributing to the impressive pressure-sensing performance of this composite were found and its capability to detect human pulse and finger flexion signals was demonstrated, making it a promising candidate for applications of wearable electronics devices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have