Abstract

Single Binary Dragonfly Algorithm (Single-BDA) which is an intelligent optimization algorithm, normally needs more calculation time and often obtains unrobust variables. In this study, an Exponential and Linear Attenuation Elimination-Binary Dragonfly Algorithm (ELAE-BDA) is proposed to overcome the problems by combining exponential and linear attenuation functions. The algorithm can quickly eliminate a part of the variables with large RMSECV in the iterative process through the exponential attenuation function first, and use the linear attenuation function at the end of the iteration for meticulous elimination of invalid variables. It avoids the important variables being deleted unexpectedly, greatly improves the running speed of the algorithm, reduces the randomness of results, and significantly improves the analysis ability of the model. Three near-infrared spectral datasets are used as research objects to evaluate the performance of the ELAE-BDA algorithm, and 6 wavelength selection algorithms including Single-BDA, GA, CARS, MC-UVE, SCARS, and fiPLS are used for comparison. The results show that the ELAE-BDA algorithm can obtain results with almost the smallest number of wavelengths and the highest stability. The established PLSR models have the best prediction with the lowest RMSECV and RMSEP, indicating that the proposed algorithm can provide a more accurate and effective results of wavelength optimization for near-infrared spectral analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.