Abstract

This study investigates the static and dynamic versions of the flexible open shop scheduling problem with the goal of minimizing makespan. The asymptotic optimality of the general dense scheduling (GDS) algorithm is proven by the boundedness hypothesis. For large-scale problems, the GDS-based heuristic algorithms are presented to accelerate convergence. For moderate-scale problems, the differential evolution algorithm is employed to obtain high-quality solutions. A series of random experiments are conducted to demonstrate the effectiveness of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.