Abstract

Mechanical computers have gained intense research interest at size scales ranging from nano to macro as they may complement electronic computers operating in extreme environments. While nanoscale mechanical computers may be easier to integrate with traditional electronic components, most current nanomechanical computers are based on volatile resonator systems that require continuous energy input. In this study, we propose a non-volatile nanomechanical bit based on the quasi-stable configurations of few-layer graphene with void defects, and demonstrate its multiple quasi-stable states by deriving an analytic relationship for the void configuration based on a competition between the bending energy and the cohesive energy. Using this nanomechanical bit, typical logic gates are constructed to perform Boolean calculations, including NOT, AND, OR, NAND and NOR gates, and demonstrate reprogrammability between these logic gates. We also study the accuracy and the stability of the nanomechanical bits based on the few-layer graphene. These findings provide a novel approach to realize the nanomechanical computing process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call