Abstract

In practical applications, flexible pressure sensors must demonstrate adequate sensitivity, durability, and the ability to detect both dynamic and static forces across a wide range. The objective of this study is to develop a flexible dual-mechanism piezoelectric/piezoresistive sensor (FDMPS) based on layered microstructures to enable versatile detection in real fruit sorting operations. The FDMPS consists of an upper layer featuring planar MXene electrodes on a PDMS film, a mid-layer comprising microstructured Ag electrodes on a PVDF-TrFE/Silica gel/ZnO film, and a lower layer with microstructured MXene electrodes on a PDMS film composition. To ensure a secure fit, the three-layer structure is treated with APTES and plasma. All electrodes are produced using a pneumatic direct-write process, while the PDMS and piezoelectric films are created via a spin-coating process, making them suitable for large-scale production. The flexible FDMPS, with a 10 wt% ZnO content, achieves an optimal piezoelectric output of 3.6 V. Additionally, the FDMPS demonstrates excellent linearity (0.997), resistive sensitivity (23.65 kpa−1), and stability (5000 cycles). The incorporation of microstructures significantly enhances the performance of piezoelectric/piezoresistive sensing. Moreover, the FDMPS can accurately measure bending strain rate and angle within the ranges of 0–90°/s (with a sensitivity of 0.014 V/(°·s−1)) and 0–110° (with a sensitivity of 0.216/°), respectively. In a wireless, real-time mode, the FDMPS proves effective in monitoring the reciprocating motion of a robotic arm and assessing fruit ripeness during the grading process. This advancement promotes the development and application of precision agriculture and wearable sensing technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.