Abstract

The effects of crack defects on electronic and magnetic properties of zigzag MoS2 nanoribbons are investigated systematically by first-principles calculations based on spin-polarized density functional theory. We find that not only the electronic and spin transport ability of zigzag MoS2 nanoribbons can be enhanced significantly by the armchair crack defects, but also their magnetism could be modulated flexibly by crack defects. Our study suggests that the introduction of crack defect is a feasible way to modulate the electronic and magnetic properties of zigzag MoS2 nanoribbons. We further propose that the crack defects may also provide a useful tool for improving the performance of devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.