Abstract

The 1,4-α-glucan branching enzyme (GBE, EC 2.4.1.18) catalyzes the formation of α-1,6 branching points in starch and plays a key role in synthesis. To obtain mechanistic insights into the catalytic action of the enzyme, we first determined the crystal structure of GBE from Rhodothermus obamensis STB05 (RoGBE) to a resolution of 2.39 Å (PDB ID: 6JOY). The structure consists of three domains: domain A, domain C, and the carbohydrate-binding module 48 (CBM48). An engineered truncated mutant lacking the CBM48 domain (ΔCBM48) showed significantly reduced ligand binding affinity and enzyme activity. Comparison of the structures of RoGBE with other GBEs showed that CBM48 of RoGBE had a longer flexible loop. Truncation of the flexible loops resulted in reduced binding affinity and activity, thereby substantiating the importance of the optimum loop structure for catalysis. In essence, our study shows that CBM48, especially the flexible loop, plays an important role in substrate binding and enzymatic activity of RoGBE. Further, based on the structural analysis, kinetics, and activity assays on wild type and mutants, as well as homology modeling, we proposed a mechanistic model (called the "lid model") to illustrate how the flexible loop triggers substrate binding, ultimately leading to catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.