Abstract

Under proper optical injection, period-one (P1) dynamics of an optically injected semiconductor laser can be excited by undamping the relaxation resonance of the semiconductor through Hopf bifurcation. The output intensity would oscillate at a microwave frequency, i.e., the P1 frequency. After optical-to-electrical conversion, a microwave signal can be generated with its frequency determined by the detuning frequency and the injection strength. Therefore, it provides a convenient way to dynamically control the instantaneous frequency of the generated microwave signal by manipulating the injection strength. In this work, a flexible frequency-hopping (FH) microwave waveform generator by dynamic control of an optically injected semiconductor laser is proposed and demonstrated. The system has a compact structure, and the key device is a commercial semiconductor laser. The generated FH microwave waveform has a high degree of flexibility, i.e., the central frequency, bandwidth, sequence length, and frequency order can be easily adjusted. A proof-of-concept experiment is carried out. Wideband (>10 GHz) stepped linear and Costas sequence are successfully generated. Autoambiguity functions of the generated frequency-hopping sequences are also investigated. The experimental results can verify the feasibility of the proposed FH waveform generator, which may find wide applications in future radar and communications systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.