Abstract
Flexible electrochemical energy storage devices are gaining considerable interest for use in smart portable flexible electronic devices. Herein, a (Niobium nitride) NbN// Activated carbon (AC) flexible (bendable and twistable) solid-state lithium-ion hybrid capacitor (LIHC) enabled by a thin graphite-layer-coated adhesive tape-based flexible current collector is reported. NbN is synthesized by a solvothermal treatment of the niobium pentachloride (NbCl5) precursor and a subsequent nitridation treatment of the intermediate solvothermal product. Microscopic, spectroscopic, and X-ray studies signify the formation of porous 2D nanoflake units with a cubic crystalline phase, which aggregate to form microspheres. The NbN displays a high specific capacity of 347.73 mAh g−1 at 0.2 A g−1 with excellent cyclic stability (98.1% capacity retention after 10,000 cycles). The outstanding cyclic stability is clarified by the analysis of electrochemical impedance spectroscopy (EIS). The designed highly flexible LIHC with a high electrode mass loading of 280 mg cm−3 possesses a high capacitance of 2597 mF cm−3 at a current density of 60 mA cm−3. The device displays a high-energy density of 3.25 mWh cm−3, high power density of 254.2 mW cm−3, and excellent cyclic stability at 133 mA cm−3 (97.7% capacity retention after 10,000 cycles). Therefore, the designed flexible LIHC can be utilized for the development of smart flexible electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.