Abstract

Drug resistance in Gram-negative bacteria may be conferred via efflux through a tripartite complex of an inner membrane pump, an outer membrane pore, and a periplasmic adaptor protein. These are AcrB, TolC, and AcrA, respectively, in Escherichia coli. In Pseudomonas aerugonisa, their homologs are MexB, OprM, and MexA. Defining the interdomain dynamics of the adaptor protein is essential to understanding the mechanism of complex formation. Extended (25 ns) molecular dynamics simulations of MexA have been performed to determine such interdomain dynamics. Analysis of conformational drift demonstrates substantial motions of the three domains of MexA relative to one another. Principal components analysis reveals a hinge-bending motion and rotation of the α-helical hairpin relative to the other domains to be the two dominant motions. These two motions provide an element of considerable flexibility which is likely to be exploited in the adaptor function of MexA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.