Abstract

This paper presents a comprehensive assessment of the large-scale deployment of hydropower on the provision of frequency regulation services, when equipped with the extended flexibility solutions being developed and/or tested within the scope of the XFLEX HYDRO project. The current analysis is performed on the Iberian Peninsula (IP) power grid considering its interconnection to the Continental Europe (CE) system, since this power system zone is expected to have the most severe frequency transient behaviour in future scenarios with increased shares of variable renewable energies. For this purpose, prospective scenarios with increased shares of time variable renewable generation were identified and analysed. To assess the impacts of the hydropower flexibility solutions on frequency dynamics after a major active power loss, extensive time domain simulations were performed of the power system, including reliable reduced order dynamic models for the hydropower flexibility solutions under evaluation. This research assesses the effects of synchronous and synthetic inertia, and of the Frequency Containment Reserve (FCR) and Fast Frequency Response (FFR) services as specified in European grid codes. The main findings highlight the potential of hydropower inertia and of adopting a variable speed technology for enhancing frequency stability, while contribute to better understand the role of hydropower plants in future power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call