Abstract

Natural disaster interrupts essential services due to the facility damage and lack of power supply. Especially, significant communication outages occurs in a wide area for hierarchical network such as cellular communication system in case core nodes are damaged or congested. In order to provide alternative communication ability, high throughput satellite (HTS) is one of the ideal candidates for disaster management because it provides operative communication for a wide area regardless of the availability of regular terrestrial infrastructures. However, conventional HTS relays data with predetermined beam bandwidth and connection, it is inefficient when the communication demand explodes in a disaster area. Therefore, this paper proposes novel frequency allocation technique with flexibility-enhanced HTS system for disaster management to respond to communication demand explosion. While related research works consider user-link resource allocation, this paper focuses on how to control feeder-link and user-link bandwidths in case that the both links can be assigned at continuous frequency such as Ka-band. Furthermore, our proposal addresses resilient satellite network by selecting optimum gateway based on the traffic demand at neighboring user-link beams. The effectiveness of our proposal is verified through simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.