Abstract
To adjust for the non-uniform spatiotemporal nature of traffic patterns, next-generation high throughput satellite (HTS) systems can benefit from recent technological advancements in the space-segment in order to dynamically design traffic-adaptive beam layout plans (ABLPs). In this work, we propose a framework for dynamic beamforming (DBF) optimization and adaptation in dynamic environments. Given realistic traffic patterns and a limited power budget, we propose a feasible DBF operation for a geostationary multibeam HTS network. The goal is to minimize the mismatch between the traffic demand and the offered capacity under practical constraints. These constraints are dictated by the traffic-aware design requirements, the on-board antenna system limitations, and the signaling considerations in the K-band. Noting that the ABLP is agnostic about the inherent inter-beam interference (IBI), we construct an interference simulation environment using irregularly shaped beams for a large-scale multibeam HTS system. To cope with IBI, the combination of on-board DBF and on-ground precoding is considered. For precoded and non-precoded HTS configurations, the proposed design shows better traffic-matching capabilities in comparison to a regular beam layout plan. Lastly, we provide trade-off analyses between system-level key performance indicators for different realistic non-uniform traffic patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.