Abstract

Spatial division multiplexing (SDM) has been presented as a key solution to circumvent the nonlinear Shannon limit of standard single-core fibers. To implement SDM, multi-core fiber (MCF) technology becomes a top candidate that is leveraged by the very low inter-core crosstalk (XT) measurements obtained in real laboratory MCF prototypes with up to 22 cores. In this work, we concentrate on the design of MCF-enabled optical transport networks. To this goal, we present a methodology to estimate the worst-case transmission reach of the optical signals (at different bit rates and modulation formats) across MCFs given real laboratory XT measurements. Next, we present an optimal integer linear programming (ILP) formulation for the design of a flex-grid/SDM optical transport network that makes use of the transmission reach estimations. Additionally, an effective simulated annealing (SA)-based heuristic able to solve large problem instances with reasonable execution times is presented. Once the proposed heuristic is adequately tuned and validated, we use it to compare the resource utilization in MCF-enabled network scenarios against currently available multi-fiber link solutions. Numerical results reveal very close performances with up to 19 cores/fibers in national backbone network scenarios and up to 12 cores/fibers in long-haul continental ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.