Abstract

In this paper, we target an optimal multiple-input multiple-output digital signal processing (MIMO-DSP) assignment to super-channels affected by intercore crosstalk (ICXT) in multicore fiber (MCF) enabled transparent optical core networks. MIMO-DSP undoes ICXT effects, but can be costly with high core density MCFs. Hence, its implementation in the network must be carefully decided. We address our objective as a joint route, modulation format, MIMO and spectrum assignment (RMMSA) problem, for which integer linear programming formulations are provided to optimally solve it in small network scenarios. Moreover, several heuristic approaches are also proposed to solve large-scale problem instances with good accuracy. Their goal is to minimize both network spectral requirements and the amount of MIMO equalized super-channels, taking a crosstalk-free space division multiplexing (SDM) solution as a reference, for example, based on parallel single mode fibers [i.e., a multifiber (MF) scenario]. For our evaluation, we consider several state-of-the-art MCF prototypes and different network topologies. The obtained results, with the considered MCFs, disclose that in national backbone networks, the desirable percentage of super-channels with MIMO equalization to match the performance of an equivalent crosstalk-free SDM solution ranges from 0% to 36, while in continental-wide networks this range raises from 0% to 56%. In addition, in the case of a nonideal MIMO (with a 3 dB/km of crosstalk compensation), such percentages range from 0% to 28% and from 0% to 45% in national and continental-wide backbone networks, respectively, experimenting a performance gap up to 12% with respect to the MF reference scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.