Abstract

CFRP structural elements are prone to failure initiating from defects. While defects are expected after damage has occurred, flaws and voids can already be present after manufacturing. To study the criticality of such defects, CFRP cylinders have been manufactured from a lay-up that was designed to predict damage mode and to allow for controlled damage growth under torsional load. FEA simulations of defect-free and flawed cylinder models were performed to first ply/interface failure. X-ray computed tomography revealed that cylinders manufactured with different finishing had a completely different void content and distribution. Simulations of failure, using finite element models, for the two classes of void distribution are corroborated by experimental results for the ultimate load, and damage initiation from manufacturing flaws is confirmed. Digital speckle pattern interferometry was used to identify flaws using thermal and mechanical loading, while infrared thermography and thermoelastic stress analysis were used to identify possible failure initiation sites and monitor the failure process and damage growth, whilst the specimen was loaded in torsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.