Abstract

This paper describes the development of a stress / strain based in-situ damage inspection strategy focused around, but not exclusively, using thermoelastic stress analysis (TSA). The underlying philosophy is that defects and damage in a component or structure only constitute a cause for concern if these influence the stress field, i.e. the defect or damage acts as a stress raiser that reduces the service load limit. To assess this, it is necessary for the inspection method to map the distribution of stresses in the component, rather than the location and extent of an irregularity in the material. Imaging based techniques, such as TSA, digital image correlation (DIC) or digital speckle pattern interferometry (DSPI) provide non-contact maps of the surface stresses, deformations and/or strains. The full field data enables the engineer to evaluate if stress concentrations are present within the structure and, if data from a previous inspection is available, to assess if the distribution of stresses within the structure has changed from a previous 'undamaged' state. One of the key issues addressed in the current work has been the transition from a standard test setup, as typically used in laboratory work, to a more flexible (portable) setup relevant to industry requirements, e.g. site inspections. An approach that enables similar resolution (by comparison to current laboratory standard setups) stress and strain data to be captured using natural frequency excitation of a structure has been demonstrated on various full scale components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call