Abstract
We consider a spontaneously broken gauge theory based on the standard model (SM) group $G = SU(2)\times U(1)$ with scalar fields that carry arbitrary representations of G, and we investigate some general properties of the charged and neutral current involving these fields. In particular we derive the conditions for having real or complex couplings of the Z boson to two different neutral or charged scalar fields, and for the existence of CP-violating Z-scalar-scalar couplings. Moreover, we study models with the same fermion content as in the SM, with one SU(2) Higgs singlet, and an arbitrary number of Higgs doublets. We show that the structure of the Z-Higgs boson and of the Yukawa couplings in these models can be such that CP-violating $Zb{\bar b}G$ form factors which conserve chirality are induced at the one-loop level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.