Abstract

α-Glucosidase inhibitors are considered prime therapeutics in the management of type-2 diabetes and are preferred due to their localized action ushered by limited side effects. In this regard, nineteen new flavone-1,2,3-triazole derivatives have been designed and synthesized via utilizing an efficient click reaction protocol, and screened for the inhibition of the α-glucosidase enzyme. The reaction conditions were mild, good yielding and required easy work up. All the synthesized flavone-triazole derivatives were found more active against the yeast α-glucosidase with IC50 values ranging from 24.37 ± 0.55–168.44 ± 0.77 μ M as compared to standard inhibitor acarbose (IC50 = 844.81 ± 0.53 μM). The derivatives with 2,5‑dichloro 9k (IC50 = 24.37 ± 0.55 μM) and 4‑chloro 9d (IC50 = 24.77 ± 0.30 μM) substituent bearing an amide linkage were the most active. In the kinetic study of most active derivatives 9k and 9d, they were found to be mixed and uncompetitive inhibitors, respectively. In molecular docking studies, blind docking of the most active compounds was accomplished to find the interactions between the compounds and α-glucosidase that further confirms the mixed or uncompetitive nature of the inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call