Abstract

This study presents the design, fabrication, and evaluation of a high-performance flat-tube solid oxide cell (FT-SOC) stack, which demonstrates exceptional power generation and hydrogen production capabilities. Comprising three large-sized FT-SOCs, each with an active area of 60 cm2, the stack was tested at 750 °C. It achieved a peak power density of 1.222 W/cm2 in fuel cell (FC) mode and an electrolysis current density of 1.283 A/cm2 at an average voltage of 1.3 V in electrolysis cell (EC) mode, marking the highest reported values for FT-SOC stacks to date. These results surpass the performance of most large-sized planar SOC stacks. Post-operation analysis revealed excellent interfacial contact between components, contributing to the stack's high performance. This study underscores the potential of FT-SOCs in efficient power generation and electrolytic energy storage applications, providing insights that could facilitate their industrial application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call