Abstract

Twisted bilayer graphene develops quasiflat bands at specific "magic" interlayer rotation angles through an unconventional mechanism connected to carrier chirality. Quasiflat bands are responsible for a wealth of exotic, correlated-electron phases in the system. In this Letter, we propose a mechanical analog of twisted bilayer graphene made of two vibrating plates patterned with a honeycomb mesh of masses and coupled across a continuum elastic medium. We show that flexural waves in the device exhibit vanishing group velocity and quasiflat bands at magic angles in close correspondence with electrons in graphene models. The strong similarities of spectral structure and spatial eigenmodes in the two systems demonstrate the chiral nature of the mechanical flat bands. We derive analytical expressions that quantitatively connect the mechanical and electronic models, which allow us to predict the parameters required for an experimental realization of our proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.