Abstract

Sustainable manufacturing that prioritizes energy efficiency, minimal water use, scalability and the ability to generate diverse materials is essential to advance inorganic materials production while maintaining environmental consciousness. However, current manufacturing practices are not yet equipped to fully meet these requirements. Here we describe a flash-within-flash Joule heating (FWF) technique-a non-equilibrium, ultrafast heat conduction method-to prepare ten transition metal dichalcogenides, three group XIV dichalcogenides and nine non-transition metal dichalcogenide materials, each in under 5 s while in ambient conditions. FWF achieves enormous advantages in facile gram scalability and in sustainable manufacturing criteria when compared with other synthesis methods. Also, FWF allows the production of phase-selective and single-crystalline bulk powders, a phenomenon rarely observed by any other synthesis method. Furthermore, FWF MoSe2 outperformed commercially available MoSe2 in tribology, showcasing the quality of FWF materials. The capability for atom substitution and doping further highlights the versatility of FWF as a general bulk inorganic materials synthesis protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.