Abstract

Flash vacuum pyrolysis at 600°C through glass wool coated with freshly sublimed magnesium is examined as a preparative method for dehalogenative coupling in organic synthesis. Substituted benzylidene chlorides give predominantly the corresponding stilbenes and in some cases these are readily isolated in pure form. With an ortho-halogen substituent, additional cyclisation gives phenanthrenes but the method is not compatible with the presence of several reactive groups. An ortho-methoxy substituent leads to unexpected formation of mono- and dimethyl products. With 1,4-bis(dihalomethyl)benzenes, halogenated polymers are deposited directly from the gas phase via generation of halogenated p-xylylenes. The 1,2- and 1,3-isomers lead respectively to benzocyclobutadiene, isolated as a dimer, and to pyrene. The 1,4-bis(trihalomethyl)benzenes give more highly halogenated polymers directly from the gas phase via halogenated p-xylylenes. While halobenzenes generally give the corresponding benzenes and biphenyls, 1,2-dihalobenzenes additionally produce triphenylene in preparatively useful yield by a process not involving intermediacy of free benzyne.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call