Abstract

A nonobstructing optical method was developed to measure proximal tubular fluid reabsorption in rat nephron at 0.25 Hz. The effects of uncaging luminal nitric oxide (NO) on proximal tubular reabsorption were investigated with this method. Proximal fluid reabsorption rate was calculated as the difference of tubular flow measured simultaneously at two locations (0.8-1.8 mm apart) along a convoluted proximal tubule. Tubular flow was estimated on the basis of the propagating velocity of fluorescent dextran pulses in the lumen. Changes in local tubular flow induced by intratubular perfusion were detected simultaneously along the proximal tubule, indicating that local tubular flow can be monitored in multiple sites along a tubule. The estimated tubular reabsorption rate was 5.52 +/- 0.38 nl.min(-1).mm(-1) (n = 20). Flash photolysis of luminal caged NO (potassium nitrosylpentachlororuthenate) was induced with a 30-Hz UV nitrogen-pulsed laser. Release of NO from caged NO into the proximal tubule was confirmed by monitoring intracellular NO concentration using a cell-permeant NO-sensitive fluorescent dye (DAF-FM). Emission of DAF-FM was proportional to the number of laser pulses used for uncaging. Photolysis of luminal caged NO induced a dose-dependent inhibition of proximal tubular reabsorption without activating tubuloglomerular feedback, whereas uncaging of intracellular cGMP in the proximal tubule decreased tubular flow. Coupling of this novel method to measure reabsorption with photolysis of caged signaling molecules provides a new paradigm to study tubular reabsorption with ambient tubular flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.