Abstract

This investigation characterized flammability and thermal stability for a novel sustainable composite engineered for use in building applications. Flammability and thermal stability of coal plastic composites composed of coal (40–60 wt.%) and high-density polyethylene were compared to commercial wood–plastic composites. Pyrolysis thermogravimetric analysis results indicated that coal plastic composites possessed a single-step decomposition and higher char residue, while wood–plastic composites had two-step decomposition, with the first peak occurring at much lower temperatures. Thermogravimetric analyses in air suggest coal plastic composites, compared to wood–plastic composites and neat high-density polyethylene, were more thermally stable. Flash ignition temperatures for coal plastic composites were higher than high-density polyethylene and wood–plastic composites, while self-ignition temperatures were in the same range as wood–plastic composites. Rate of burning data indicated coal plastic composites were slower burning than wood–plastic composites, with increasing coal content slowing burning rate by 19.9%–27.6%. Cone calorimeter testing showed 27% and 59% reduction in total heat release and total smoke release as coal content increased while coal plastic composite with 60 wt.% coal possessed lower overall flammability in comparison with predominant commercially available wood–plastic composite products. Coal improved composite overall thermal stability and flammability by acting as char former and foaming agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call