Abstract

In this work, flamelet modeling of pulverized coal flame stabilized in a laminar counterflow is conducted. Particularly, the effects of particle size on the flamelet model performance are investigated. The a priori tabulated thermo-chemical quantities are compared with the corresponding values in the detailed chemistry solutions, which are obtained by solving the transport equations for all species mass fractions existing in the employed detailed chemical reaction mechanism. The detailed chemistry solutions show that the pulverized coal flame structure can be changed significantly by varying the particle size. While pulverized coal flame structure with small particles is similar to the pure gas flame, it becomes much more complex when the particle Stokes number is larger than unity. Large coal particles can directly cross the flame front to the opposite side and disperse over a large region, resulting a significantly wrinkled flame front and a considerably broadened reaction zone. Comparisons between the tabulated thermo-chemical quantities and the detailed chemistry solutions show that the CH4, O2 and H2O species mass fractions and their RMS (root mean square) values for all cases can be well predicted by the classical flamelet model without any modification, while the peak values of OH mass fraction, gas temperature and heat release rate for the large particle case cannot be correctly captured. For all cases, the mass fractions of combustion-mode-sensitive species cannot be correctly predicted in the premixed flame reaction zone by the employed diffusion-flame-based flamelet model. Such discrepancies are even more pronounced at large particle conditions since the premixed flame reaction zone tends to be broadened.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call