Abstract

High density polyethylene sheets 2 mm thick were flame treated to modify the surface properties. Sheets treated using a flame with air to gas (methane) ratio ∼ 10:1 at different distances between the inner cone tip of the flame and the polymer surface were investigated. Grafting of selected monomers as maleic anhydride, acrylamide and glycidyl methacrylate was attempted by flame treatment of sheets covered with a monomer layer. Good grafting results were obtained with acrylamide and maleic anhydride. The surface temperature-time dependence during the flame treatment was measured with a high resolution thermocouple. Scanning Electron Microscopy (SEM) allowed evidencing a modified thickness of about 120 μm. The chemical surface modification was studied by X ray Photoelectron Spectroscopy (XPS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT). The hydroxyl, carbonyl and carboxyl content was measured after derivatization with reagents containing an elemental tag to facilitate XPS analysis of surface functional groups. In comparison to the untreated polyethylene, wetting tension and contact angle of the flamed materials showed a strong variation. This variation was almost independent of the distance between the flame and the polymer surface. Adhesion between treated polyethylene and a polyurethane adhesive was determined using T-peel test measurements. High adhesion levels were found with flame treated polyethylene at 5 mm distance. XPS results indicate that when adhesion is high, the hydroxyl is in excess compared to the other measured functions, i.e. carbonyl and carboxyl species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call