Abstract

A novel intumescent flame retardant (IFR) system composed of ammonium polyphosphate and poly (1,3-diaminopropane-1,3,5-triazine-o-bicyclic pentaerythritol phosphate) (APP/PDTBP) was mixed with polyethylene to prepare the continuous glass fibre reinforced polyethylene (CGF/PE) unidirectional prepregs by melt impregnation process, and then the CGF/PE/IFR composite laminate were consolidated by hot compression moulding method. The flame retardancy, thermal stability and mechanical properties of CGF/PE/IFR composite laminates were investigated by limiting oxygen index, vertical burning test, cone calorimetric test, thermogravimetric analysis, tensile and flexural strength tests, mode I interlaminar fracture toughness test, and scanning electron microscopy (SEM). The flame retardancy of CGF/PE composite laminates increased with the increase of IFR system loading, which attributes to the formation of intumescent char layer from flame retardants and the weakening of wicking actions of glass fibres. The mechanical properties increased and then decreased with addition of flame retardants, except for the flexural strength with continuous increase. The SEM images showed that IFR system had toughening effect and could improved the strength of fibre-matrix interface. Based on the mechanical properties and the flame retardancy, when the matrix contains 30 wt% IFR system, the CGF/PE/IFR composite laminate had the best comprehensive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call