Abstract

Phosphorus- and nitrogen-doped graphene oxides are conveniently obtained by the modification of as-prepared graphene oxide and characterized by scanning electron microscopy, X-ray powder diffraction, Fourier-transform infrared, and ultraviolet–visible spectra. The combustion performances of pure cotton fabric, respectively, enriched with graphene oxide, phosphorus-doped graphene oxide, and nitrogen-doped graphene oxides, are tested and evaluated. The results show that phosphorus-doped graphene oxide acts as the most promising flame retardant, which can effectively reduce the burning rate and heat release rate of the combustion process, with excellent smoke suppression effect. Based on the relevant parameters obtained from the experimental results of phosphorus-doped graphene oxide, Simtec simulation is operated to demonstrate vertical combustion of thin fabric before and after flame-retardant treatment, and the results are consistent with the trend of the experimental results and suggest a magnifying effect of phosphorus-doped graphene oxide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call