Abstract

An experimental study on one-dimensional, laminar flame quenching on a cold wall was described herein. A homogeneous mixture of propane-air was ignited at the center of a spherical vessel, and the effects of pressure, mixture ratio and vessel size on the heat flux to the wall and on the unburned hydrocarbon concentrations were investigated. The characteristic values of quenching layer thickness defined from the maximum heat flux and the unburned hydrocarbon concentrations, δq and δHC, respectively, were determined. The value of δq was proportional to about minus 0.45 of the power of the pressure and was independent of the mixture ratio and the size of the combustion vessel. It was recognized that in the large size vessel, the hydrocarbons in the quench layer after the completion of combustion with flame propagation were oxidized. The value ofδHC obtained in the small size vessel was proportional to δq.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.