Abstract

Natural convection in an inclined enclosure from below and containing internally heated fluid has been investigated using a finite difference calculation procedure. Results have been obtained for Rayleigh number values up to 10 6 and for inclination angles of 30 and 60°. For internal Rayleigh numbers that are much larger than the external Rayleigh number, the flow rises in the interior and moves down both the hot and cold walls. On the other hand, if the external Rayleigh number has a larger magnitude, the flow moves upwards along the hot surface and downwards along the cold surface. For the latter situation, the inner core is multicellular in nature at large external Rayleigh numbers. The average heat flux ratio along the cold surface (convective heat flux/corresponding conduction heat flux) increases with increasing external Rayleigh number and decreasing internal ratio is non-monotonic in nature. The heat flux ratio along both surfaces is observed to be strongly dependent on the inclination angle at high external Rayleigh numbers. A maximum in the local heat flux along the cold surface is obtained in the vicinity of x/L = 1 where hot fluid, either from the interior or directly from the opposite hot wall, meets the surface. Along the hot wall, a maximum in the heat flux ra flo

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call