Abstract

We apply ideas from crystal theory to affine Schubert calculus and flag Gromov-Witten invariants. By defining operators on certain decompositions of elements in the type-$A$ affine Weyl group, we produce a crystal reflecting the internal structure of Specht modules associated to permutation diagrams. We show how this crystal framework can be applied to study the product of a Schur function with a $k$-Schur function. Consequently, we prove that a subclass of 3-point Gromov-Witten invariants of complete flag varieties for $\mathbb{C}^n$ enumerate the highest weight elements under these operators. Nous appliquons des idées provenant de la théorie des bases cristallines au calcul de Schubert affine et aux invariants de drapeaux de Gromov–Witten. Nous définissons des opérateurs sur certaines décompositions d’éléments de groupes de Weyl affines en type $A$ afin de construire une base cristalline encodant la structure interne des modules de Specht associés aux diagrammes de permutations. Nous montrons comment la structure de cristal permet d’étudier le produit d’une fonction de Schur avec une $k$-fonction de Schur. En conséquence, nous prouvons que la sous-classe des invariants de 3-points de Gromov–Witten d’une variété complète de drapeaux complets pour $\mathbb{C}^n$ énumère les éléments de poids maximaux pour ces opérateurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.