Abstract

Surface engineered nanoparticles (NPs) are of great attention due to their targeted medical applications. The nature of the functionalized surface plays a vital role in achieving the required functionalities of engineered NPs. Owing to the biofilm formation capabilities of wound associated pathogens, impaired wound healing is a major complication in the medical field. In this context, herein, we report the biogenic synthesis of Flacourtia indica (FI) based NPs, i.e., FI-AgNPs using the aqueous leaf extract of this anti-bacterial herb. The newly developed FI-AgNPs were characterized using various analytical and imaging techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The FI-AgNPs showed potent anti-microbial activity and anti-biofilm potential which were examined through a test tube adherence method and congo red agar method. It has been observed that synthesized FI-AgNPs inhibit the formation of a biofilm of observed bacteria, even at a minimum concentration of 80 μgml−1. These findings suggest that synthesized FI-AgNPs could be used against wound associated microbes, especially bacterial coating on medical devices, to prevent antibiotic-resistant biofilm infections. Further development and research are obligatory to decode this skill into preventive and therapeutic strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call