Abstract

Rare-earth substituted zinc ferrite nanoparticles with the chemical formula ZnFe1.8La0.2O4 have been successfully synthesized via a polyethylene glycol (PEG) assisted facile hydrothermal route. The influence of La substituted zinc ferrite nanoparticles was investigated using various techniques. The structure, crystallite size, functional group, optical properties, surface morphology and elemental analysis of synthesized sample were analyzed by Powder X-ray diffraction (PXRD), Fourier transform spectroscopy (FTIR), UV–visible spectroscopy, scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS). The PXRD pattern analysis indicated the formation of a simple cubic spinel structure. Also, using Debye-Scherrer equation, the average crystallite size of the particles was calculated to be about 15.06 nm. FT-IR studies confirmed the tetrahedral and octahedral sites in its cubic spinel structure. UV–visible spectrum of the sample showed absorbance peak in the wavelength range between 200-800 nm. The optical energy band gap was calculated to be 2.03 eV. Surface morphology analysis by Scanning Electron Microscope (SEM) shows the formation of ununiformed agglomerated nanoparticles. Elemental composition of synthesized sample was obtained from combined SEM–EDX measurements which confirmed the presence of Zn, Fe, La and O ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.