Abstract

FK506 binding protein is closely associated with the sarcoplasmic reticulum ryanodine receptor-channel and can modulate its function. The ryanodine receptor is stabilized by its association with FK506 binding protein. The immunosuppressant drugs FK506 (tacrolimus) and rapamycin can promote dissociation of FK506 binding protein from the ryanodine receptor 1 and by this mechanism increase sensitivity of ryanodine receptor 1 to agonists such as caffeine. Furthermore, it was shown recently that treatment of normal human skeletal muscle with FK506 and rapamycin increased halothane-induced contracture. The authors investigated the effect of the immunosuppressants FK506 and rapamycin on halothane-induced Ca2+ release in skeletal muscle sarcoplasmic reticulum vesicles. Skeletal muscle terminal cisterns were isolated from New Zealand White rabbits. Ca2+ uptake and release was monitored in skeletal muscle sarcoplasmic reticulum vesicles using the fluo-3 fluorescent technique. Western Blot analysis of FK506 binding protein was performed using standard protocol. The authors observed that treatment of skeletal muscle sarcoplasmic reticulum vesicles with FK506 and rapamycin enhances halothane-induced Ca2+ release by about five times. Furthermore, the Ca2+ release induced by halothane in the presence of FK506 was inhibited by several antagonists of the ryanodine receptor, such as ruthenium red, spermine, and Mg2+. Dissociation of FK506 binding protein from its binding site in skeletal muscle sarcoplasmic reticulum vesicles can modulate halothane-induced Ca2+ release through the ryanodine receptor. Data are discussed in relation to the role of the FK506 binding protein in modulating the effect of halothane on the ryanodine receptor and the development of malignant hyperthermia phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.