Abstract

A fixed bed of raw rice husk was used for the removal of Zn (II) from aqueous solution. The material as adopted was found to be an efficient media for the removal of Zn (II) in continuous mode using fixed bed column. Different column design parameters like depth of exchange zone, flow rate and initial concentration were calculated. When conducted with Zn (II) concentration 10 mg.L-1 and flow rate 10 ml.min-1 with different bed depths such as 3, 6 and 9 cm, the equilibrium uptake was 3.366, 2.847 and 2.764 mg.g-1, respectively. The equilibrium uptake decreased from 2.802 to 1.975 mg.g-1 with increasing of flow rate from 5 to 15 mL.min-1 and increased from 2.764 to 3.798 mg.g-1 when initial concentration increased from 10 to 30 mg.L-1. The dynamics of adsorption process was modeled by bed depth service time (BDST), and indicating the validity of BDST model when applied to the continuous column studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.