Abstract
In the paper Krasnoselskii–Mann method for non-self mappings in the journal of Fixed Point Theory and Applications, Colao and Marino proved strong convergence of Krasnoselskii–Mann algorithm defined by $$x_{n+1}=\alpha _nx_n+(1-\alpha _n)Tx_n$$ for a non-expansive non-self mapping in a Hilbert space and they proposed three open questions. In this paper we have proved theorems that are answers to all the open questions raised in that paper by relaxing the space, involved map and inward condition to be uniformly convex Banach space, quasi-nonexpansive and weakly inward condition respectively. An application of non-linear parabolic partial differential equation is discussed.We also provide numerical example to verify our main result.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have