Abstract

In electrolytic in-process dressing (ELID), a metal-bonded grinding wheel is dressed as a result of anodic dissolution. In this paper we describe experiments to evaluate the potential for ELID on bronze wheels in fixed-load grinding applications. A constant-force grinding apparatus was used to determine appropriate ELID conditions for a 10–20 μm bronze bonded diamond grinding wheel used to machine silicon carbide. A practical implementation of ELID was demonstrated using a low speed bronze bonded diamond wafering saw. Optimum ELID current was determine for different workpiece materials, and the wear rate of the saw blade using ELID was found to be of the same order as the wear rate of the saw blade using intermittent dressing with a porous ceramic stick. Some of the important factors controlling the rate of dressing by ELID (rate of film growth, rate of film wear and rate of diamond wear) and their combined effects are discussed. Successful use of ELID on bronzebonded wheels in other applications will be facilitated by understanding these phenomena, developing a general process model based on them and being able to predict useful ELID parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call