Abstract

The ability of aerobic anoxygenic photoheterotrophs (AAPs) to gain additional energy from sunlight represents a competitive advantage, especially in conditions where light has easy access or under environmental conditions may change quickly, such as those in the world´s oceans. However, the knowledge about the metabolic consequences of aerobic anoxygenic photosynthesis is very limited. Combining transcriptome and metabolome analyses, isotopic labelling techniques, measurements of growth, oxygen uptake rates, flow cytometry, and a number of other biochemical analytical techniques we obtained a comprehensive overview on the complex adaption of the marine bacterium Dinoroseobacter shibae DFL12T during transition from heterotrophy to photoheterotrophy (growth on succinate). Growth in light was characterized by reduced respiration, a decreased metabolic flux through the tricarboxylic acid (TCA) cycle and the assimilation of CO2 via an enhanced flux through the ethylmalonyl-CoA (EMC) pathway, which was shown to be connected to the serine metabolism. Adaptation to photoheterotrophy is mainly characterized by metabolic reactions caused by a surplus of reducing potential and might depend on genes located in one operon, encoding branching point enzymes of the EMC pathway, serine metabolism and the TCA cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call