Abstract
In recent decades, excessive human activities have led to large-scale rocky desertification in karst areas. Vegetation restoration is one of the most important ways to control rocky desertification. In this study, vegetation surveys were conducted on three typical plantations in Jianshui County, Yunnan Province, a typical karst fault basin area, in 2016 and 2021. The plantations were Pinus massoniana forest (PM), Pinus yunnanensis forest (PY), and mixed forests of Pinus yunnanensis and Quercus variabilis (MF). Plant diversity and soil nutrients were compared during the five-year period. This paper mainly draws the following results: The plant diversity of PM, PY, and MF increased. With the increase of time, new species appeared in the tree layer, shrub layer, and herb layer of the three forests. Tree species with smaller importance values gradually withdrew from the community. In the tree layer, the Patrick index, Simpson index, and Shannon–Wiener index of the three forests increased significantly. The Pielou index changed from the highest for PM in 2016 to the highest for PY in 2021. In the shrub layer, the Pielou index of the three forests increased. The Patrick index changed from the highest for MF in 2016 to the highest for PY in 2021. There was no significant difference in species diversity index for the herb layer. With the increase of vegetation restoration time, the soil bulk density (BD) of the three forests decreased. There was no significant difference in soil total porosity (TP), soil capillary porosity (CP), and non-capillary porosity (NCP). The pH of PM increased significantly from 5.88~6.24 to 7.24~7.34. The pH of PY decreased significantly (p < 0.05). The contents of total nitrogen (TN) and ammonium nitrogen (NH4+-N) in PY and MF decreased. The content of nitrate nitrogen (NO3−-N) in the three forests increased significantly (p < 0.05). Total phosphorus (TP) content decreased in PM and MF. The content of available phosphorus (AP) in PM and PY increased. In general, with the increase of vegetation restoration time, plant diversity and soil physical and chemical properties have also been significantly improved. The results can provide important data support for vegetation restoration in karst areas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have