Abstract

PurposeTo investigate the potential of combining Compressed Sensing (CS) and a newly developed AI-based super resolution reconstruction prototype consisting of a series of convolutional neural networks (CNN) for a complete five-minute 2D knee MRI protocol. MethodsIn this prospective study, 20 volunteers were examined using a 3T-MRI-scanner (Ingenia Elition X, Philips). Similar to clinical practice, the protocol consists of a fat-saturated 2D-proton-density-sequence in coronal, sagittal and transversal orientation as well as a sagittal T1-weighted sequence. The sequences were acquired with two different resolutions (standard and low resolution) and the raw data reconstructed with two different reconstruction algorithms: a conventional Compressed SENSE (CS) and a new CNN-based algorithm for denoising and subsequently to interpolate and therewith increase the sharpness of the image (CS-SuperRes). Subjective image quality was evaluated by two blinded radiologists reviewing 8 criteria on a 5-point Likert scale and signal-to-noise ratio calculated as an objective parameter. ResultsThe protocol reconstructed with CS-SuperRes received higher ratings than the time-equivalent CS reconstructions, statistically significant especially for low resolution acquisitions (e.g., overall image impression: 4.3 ± 0.4 vs. 3.4 ± 0.4, p < 0.05). CS-SuperRes reconstructions for the low resolution acquisition were comparable to traditional CS reconstructions with standard resolution for all parameters, achieving a scan time reduction from 11:01 min to 4:46 min (57 %) for the complete protocol (e.g. overall image impression: 4.3 ± 0.4 vs. 4.0 ± 0.5, p < 0.05). ConclusionThe newly-developed AI-based reconstruction algorithm CS-SuperRes allows to reduce scan time by 57% while maintaining unchanged image quality compared to the conventional CS reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.