Abstract
Objective: To analyze the wear debris characteristics ofcarbon-based nano- multilayer coatings on Ti(6)Al(4)V alloys and compared with the cobalt chromium molybdenum alloy (CoCrMo) femoral head to evaluate the friction and wear performance of the new coated femoral head. Methods: Three groups were set up in the wear simulation experiment according to the type of femoral head. Group A: imported Cobalt-Chromium-Molybdenum alloy femoral head (CoCrMo); group B: Titanium alloy femoral head (Ti(6)Al(4)V) with carbon-based nano-multilayer coatings; group C: domestic Cobalt-Chromium-Molybdenum alloy femoral head (CoCrMo). All heads were jointed with an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup. Serum samples were collected and stored in the hip joint simulator. After the sample has been digested and diluted, it was filtered through 5 μm, 1.2 μm and 0.4 μm filters, and the filter paper was collected for testing. Scanning electron microscope (SEM) was used to randomly select regions on the filter to obtain images of wear debris. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental type of the particle and to eliminate possible contamination. The composition and structure of the abrasive chips were measured using Fourier transform infrared spectrometer (FTIR). The parameters related to the wear debris includingparticle size, shape, number and volume were calculated. The differences in correlation parameters between the groups were compared to evaluate the friction and wear properties of the new coated joints. Results: The main component of the wear debris produced was UHMWPE, and the particle size was mostly below 1 μm. The submicron particle ratio of group B was 49.4%, which was significantly lower than that of the group A and C (75% and 60%, respectively; χ(2)=66.032, 31.754, both P<0.017). The shape was mainly round, and there was no statistical difference between the groups (χ(2)=0.590, P=0.744). The number of particles in group B was significantly less than that of group C on all filters (t=9.960, 8.019, 5.790, all P<0.01), and less than group A on the 0.4 μm filter (t=7.810, P=0.000). Conclusion: The frictional wear performance of the new carbon-based nano-multilayer coatings femoral head is significantly better than that of the domestic femoral head, and even partially exceeds the imported femoral head level, which helps to reduce the production of particles and prevent osteolysis and aseptic loosening induced by UHMWPE particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.