Abstract

We present fission-barrier-height calculations for nuclei throughout the periodic table based on a realistic macroscopic-microscopic model. Compared to other calculations (i) we use a deformation space of a sufficiently high dimension, sampled densely enough to describe the relevant topography of the fission potential, (ii) we unambiguously find the physically relevant saddle points in this space, and (iii) we formulate our model so that we obtain continuity of the potential energy at the division point between a single system and separated fission fragments or colliding nuclei, allowing us to (iv) describe both fission-barrier heights and ground-state masses throughout the periodic table.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.