Abstract

This paper focuses on the recursive parameter estimation methods for the exponential autoregressive (ExpAR) model. Applying the negative gradient search and introducing a forgetting factor, a stochastic gradient and a forgetting factor stochastic gradient algorithms are presented. In order to improve the parameter estimation accuracy and the convergence rate, the multi-innovation identification theory is employed to derive a forgetting factor multi-innovation stochastic gradient algorithm. A simulation example is provided to test the effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.