Abstract

In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of covariance structures makes more general software more advantages under certain conditions. However, as a disadvantage of general software's software flexibility, few preprogrammed commands exist for specifying covariance structures. For instance, PROC MIXED has a few dozen such preprogrammed options, but when researchers divert to a Bayesian framework, software offer no such guidance and requires researchers to manually program these different structures, which is no small task. As such the literature has noted that empirical papers tend to simplify their covariance matrices to circumvent this difficulty, which is not desirable because such a simplification will likely lead to biased estimates of variance components and standard errors. To facilitate wider implementation of Bayesian growth models that properly model covariance structures, this article overviews how to generally program a growth model in SAS PROC MCMC and then demonstrates how to program common residual error structures. Full annotated SAS code and an applied example are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.