Abstract

Abstract Rapid advances in the quality and quantity of atmospheric observations have placed a demand for the development of techniques to assimilate these data sources into numerical forecasting models. Four-dimensional variational assimilation is a promising technique that has been applied to atmospheric and oceanic dynamical models, and to the retrieval of three-dimensional wind fields from single-Doppler radar observations. This study investigates the feasibility of using space–time variational assimilation for a complex discontinuous numerical model including cloud physics. Two test models were developed: a one-dimensional and a two-dimensional liquid physics kinematic microphysical model. These models were used in identical-twin experiments, with observations taken intermittently. Small random errors were introduced into the observations. The retrieval runs were initialized with a large perturbation of the observation run initial conditions. The models were able to retrieve the original initial condi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.